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Abstract
Density waves are investigated in the full velocity difference model (FVDM)
analytically and numerically. By the use of nonlinear analysis, the Burgers,
Korteweg–de Vries (KdV) and Modified KdV equations are derived for the
triangular shock wave, the soliton wave and the kink–antikink wave,
respectively, appearing in the stable region out of the coexisting curve, near the
spinodal line, and in the unstable region within the spinodal line. It is shown,
numerically, that the triangular shock wave and the soliton wave are determined
by the initial perturbation configuration and different initial perturbations will
produce different waveforms in the stable region or near the spinodal line.

PACS numbers: 05.90.+m, 47.35.+i, 89.40.+k

1. Introduction

Traffic flow problems have attracted much attention with considerable interest for decades.
When car density is higher than the critical density in a highway, traffic jams occur and
propagate as density waves [1–6]. Kerner and Konhäuser found the single-pulse density wave
in numerical simulations of the cluster with the hydrodynamic traffic flow model [7], which
was lately recognized as the asymmetric kink–antikink density wave. Kurtze and Hong derived
the KdV equation from the hydrodynamic model by using nonlinear analysis and obtained the
soliton solution [8]. Komatsu and Sasa derived the MKdV equation from the optimal velocity
model (OVM) [3, 9]. Recently, Muramatsu and Nagatani clarified the difference between
the soliton and kink density waves [10] and found the triangular shock wave described by
the Burgers equation during the relaxation process of nonuniform density profile in the stable
traffic flow to the uniform density profile [11]. Up to now, three types of density waves have
all been found in traffic flow: the first is the kink–antikink density described by the MKdV
equation appearing in the unstable region within the spinodal line, the second is the soliton
density wave described by the KdV equation appearing near the spinodal line and the third

0305-4470/06/061251+13$30.00 © 2006 IOP Publishing Ltd Printed in the UK 1251

http://dx.doi.org/10.1088/0305-4470/39/6/003
mailto:ouzhonghui@vip.sina.com
http://stacks.iop.org/JPhysA/39/1251


1252 Z-H Ou et al

is the triangular shock wave described by the Burgers equation appearing in the stable region
out of the coexisting curve [11–16].

The typical nonlinear wave equations are often derived from the OVM [2–4, 9, 10, 14, 15].
Helbing and Tilch carried out a calibration of the OVM with respect to the empirical data and
it is shown that the OVM encountered the problems of too high acceleration and unrealistic
deceleration [17]. In order to solve this problem, Helbing introduced the negative velocity
difference term into the OVM and proposed a generalized force model (GFM) [17]. Jiang
considered that the GFM does not take the effect of the positive velocity difference on traffic
dynamics into account, which would result into the GFMs invalidation in anticipating the delay
time and disturbance propagation velocity [18]. In order to solve the problem, Jiang takes
both positive and negative velocity differences into account and proposed the FVDM [18].
The work of this paper is to derive the nonlinear equations from the FVDM and determine the
relations between initial conditions and density waves in numerical simulations.

In this paper, the nonlinear analysis is applied to the FVDM. The Burgers, the KdV and
the MKdV equations are derived from the FVDM. We take numerical simulations on three
kinds of nonlinear density waves with different initial conditions [10, 11, 15, 16]. Finally, we
discuss the physical significance of the nonlinear density waves.

2. Density waves and nonlinear equations

In 1995, Bando et al presented a car-following model called the optimal velocity model [2–4].
It was based on the idea that each vehicle has an optimal velocity, which depends on the
following distance of the preceding vehicle. The equation of the model is

d2xn(t)

dt2
= a

[
V (�xn(t)) − dxn(t)

dt

]
, (1)

where xn(t) is the position of car n at time t,�xn(t) (= xn+1(t) − xn(t)) is the headway of the
car n at time t, V is the optimal velocity that the drivers prefer and a is the sensitivity of a
driver.

Jiang took the effect of the velocity difference on traffic dynamics into account, added a
term on the right-hand side of equation (1) and obtained the FVDM

d2xn(t)

dt2
= a

[
V (�xn(t)) − dxn(t)

dt

]
+ λa

d�xn(t)

dt
, (2)

where λ is the responsive factor of velocity difference [18]. If λ = 0, equation (2) can be
reduced to equation (1). In this paper, we nonlinearly analyse the FVDM and derive the
nonlinear wave equations from the FVDM to describe the density waves.

2.1. Linear stability analysis

The linear stability theory is applied to the FVDM in this subsection. We consider the stability
of a uniform traffic flow. The uniform traffic flow is defined by such a case that all cars move
with constant headway �x(0) and optimal velocity V (�x(0)). The solution of the uniform
steady state is given by

x(0)
n = �x(0)n + V (�x(0))t, �x(0) = L/N, (3)

where N is the number of cars, L is the system size and �x(0) is the car spacing (identical
headway).
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Let yn(t) be small deviations from the uniform solution x(0)
n : xn(t) = x(0)

n (t) + yn(t).
Then, the linearized equation is obtained from equation (2),

d2yn(t)

dt2
= a

[
V ′(�x(0))�yn(t) − dyn(t)

dt

]
+ λa

d�yn(t)

dt
, (4)

where V ′(�x(0)) = [dV (�x)/d�x]|�x=�x(0) .
By expanding yn(t) = Y exp(iαkn + zt), one obtains

z2 + [a + λa − λa exp(iαk)]z − aV ′[exp(iαk) − 1] = 0, (5)

where z = u + iv (u and v are real). When u = 0, the critical curve is

V ′ = λa(1 + λ − λ cos αk) +
a

2 cos2 αk
2

(1 + λ − λ cos αk)
2. (6)

The traffic flow is stable if the following condition is satisfied:

V ′(�x(0)) <
a(2λ + 1)

2
. (7)

2.2. Burgers equation

The Burgers equation is derived for the density wave in the stable traffic flow region in this
subsection. We now consider long-wave modes on coarse-grained scales by the long-wave
expansion and the slowly varying behaviour at long wavelengths in the stable region. We
extract slow scales for space variable n and time variable t and define slow variables X and T
for 0 < ε � 1 [11, 19]:

X = ε(n + bt) and T = ε2t, (8)

where b is a constant determined later. The headway is set as

�xn(t) = �x(0) + εR(X, T ). (9)

For later convenience, equation (2) is rewritten as

d2�xn(t)

dt2
= a

[
V (�xn+1(t)) − V (�xn(t)) − d�xn(t)

dt

]
+ λa

(
d�xn+1(t)

dt
− d�xn(t)

dt

)
.

(10)

By expanding each term in equation (10) to the third order of ε with the use of equations (8)
and (9), one obtains

d�xn(t)

dt
= ε2b∂XR + ε3∂T R, (11)

d2�xn

dt2
= ε3b2∂2

XR, (12)

�xn+1(t) = �x(0) + εR + ε2∂XR +
1

2
ε3∂2

XR, (13)

V (�xn) = V (�x(0)) + V ′(�xn − �x(0)) +
1

2
V ′′(�xn − �x(0))

2
, (14)

V (�xn+1) − V (�xn) = ε2V ′∂XR + ε3

(
V ′′R∂XR +

1

2
V ′∂2

XR

)
, (15)

d(�xn+1 − �xn)

dt
= ε3b∂2

XR. (16)
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By substituting equations (11)–(16) into equation (10), one obtains the following nonlinear
partial differential equation:

ε2(b − V ′)∂XR + ε3

[
∂T R − V ′′R∂XR −

(
V ′ + 2λb

2
− b2

a

)
∂2
XR

]
= 0, (17)

where ∂T = ∂/∂T , ∂X = ∂/∂X and V ′′(�x(0)) = [d2V (�x)/d�x2]|�x=�x(0) .
By taking b = V ′, the second-order term of ε is eliminated from equation (17). One

obtains the following partial differential equation:

∂T R − V ′′R∂XR =
(

2λ + 1

2
V ′ − V ′2

a

)
∂2
XR. (18)

In the stable traffic region satisfying the stability condition equation (7),

2λ + 1

2
V ′ − V ′2

a
= V ′

(
2λ + 1

2
− V ′

a

)
> 0,

V ′′(�x) < 0 for �x > hc (hc is the safety distance), so equation (18) is the Burgers equation.
The solution of the Burgers equation for the asymptotic stage (T � 1) is a train of N-triangular
shock waves and can be given by

R(X, T ) = 1

|V ′′|T
[
X − 1

2
(ηn + ηn+1)

]

− 1

2|V ′′|T (ηn+1 − ηn) tanh

[
B

4|V ′′|T (ηn+1 − ηn)(X − ξn)

]
, (19)

where B = 2λ+1
2 V ′ − 1

a
V ′2 [11, 20]. The coordinates of the shock fronts are given

by ξn(n = 1, 2, . . . , N) and those of the intersections of the slopes with the x axis by
ηn(n = 1, 2, . . . , N). When λ = 0, B = 1

2V ′ − 1
a
V ′2 is the result derived from the OVM

[11, 16].

2.3. KdV equation

By expanding equation (5) with iαk near the neutral stability point (�x(0), as), as = 2
2λ+1V ′,

one obtains

z = i
(2λ + 1)as

2
αk +

(2λ + 1)(as − a)

4
α2

k − i
(2λ + 1)as

12
α3

k − (2λ + 1)as

16
α4

k + O
(
α5

k

)
. (20)

Suppose the headway of uniform traffic is near the neutral stability point. We quantify this by
writing

V ′(�x(0)) − 2λ + 1

2
(as − δa) = 2λ + 1

2
δa = 2λ + 1

2
a

(as

a
− 1

)
,

(21)
2λ + 1

2
a

∣∣∣as

a
− 1

∣∣∣ ≡ βε2, β = 2λ + 1

2
a, ε =

√∣∣∣as

a
− 1

∣∣∣.
ε is introduced as a small scaling parameter.

We derive the KdV equation from equation (2) near the spinodal line (the neutral stability
line) in this subsection. One defines the slow variables X and T [8, 9, 12, 14, 19]:

X = ε(n + bt) and T = ε3t. (22)

The headway is set as [10, 11]

�xn(X, T ) = �x(0) + ε2R(X, T ). (23)
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By expanding each term in equation (10) to the sixth order of ε, one obtains

d�xn

dt
= ε3b∂XR + ε5∂T R, (24)

d2�xn

dt2
= ε4b2∂2

XR + 2ε6b∂X∂T R, (25)

�xn+1(t) = �x(0) + ε2R + ε3∂XR +
1

2
ε4∂2

XR +
1

6
ε5∂3

XR +
1

24
ε6∂4

XR, (26)

V (�xn) = V (�x(0)) + V ′(�xn − �x(0)) +
1

2
V ′′(�xn − �x(0))

2
, (27)

V (�xn+1) − V (�xn) = ε3V ′∂XR +
1

2
ε4V ′∂2

XR + ε5

(
V ′

6
∂3
XR + V ′′R∂XR

)

+ ε6

(
V ′

24
∂4
XR +

V ′′

4
∂2
XR2

)
. (28)

d(�xn+1 − �xn)

dt
= ε4b∂2

XR +
1

2
ε5b∂3

XR + ε6

(
∂X∂T R +

1

6
b∂4

XR

)
. (29)

By substituting equations (24)–(29) into equation (10), one obtains the following nonlinear
partial differential equation:

ε3(ab − aV ′)∂XR + ε4

(
b2 − aV ′

2
− λab

)
∂2
XR

+ ε5

(
a∂T R − aV ′

6
∂3
XR − aV ′′R∂XR − λab

2
∂3
XR

)

+ ε6

(
2b∂X∂T R − aV ′

24
∂4
XR − aV ′′

4
∂2
XR2 − λa∂X∂T R − λab

6
∂4
XR

)
= 0.

(30)

By taking b = V ′, the third-order term of ε is eliminated and the forth-order term of ε changes
into

ε4

(
b2 − aV ′

2
− λab

)
∂2
XR = ±ε6βV ′∂2

XR. (31)

Using the fifth-order term of ε in equation (30),

a∂T R − aV ′

6
∂3
XR − aV ′′R∂XR − λab

2
∂3
XR = a∂T R − (3λ + 1)aV ′

6
∂3
XR − aV ′′

2
∂XR2,

one obtains

∂X∂T R = (3λ + 1)V ′

6
∂4
XR +

V ′′

2
∂2
XR2 + O(ε). (32)

By taking equations (31) and (32) into equation (30), one obtains

ε5

[
a∂T R −

(
aV ′

6
+

λab

2

)
∂3
XR − aV ′′R∂XR

]
+ ε6

[
± βV ′∂2

XR

+

(
(2b − λa)(3λ + 1) − λa

6
− a

24

)
V ′∂4

XR +
4V ′ − (2λ + 1)a

4
V ′′∂2

XR2

]
= 0.

(33)

In order to derive the regularized equation, we make the following transformations:

R = |g|
V ′′ R

′, X = −
√

(3λ + 1)V ′

6|g| X′ and T =
√

(3λ + 1)V ′

6|g|3 T ′, (34)
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where g is a negative constant. With the use of equation (34), one obtains the regularized
equation

ε5 ag2

V ′′

√
6|g|

(3λ + 1)V ′ (∂T ′R′ + ∂3
X′R

′ + R′∂X′R′)

+ ε6 6g2

(3λ + 1)V ′V ′′
[
A1∂

2
X′R

′ + A2∂
4
X′R

′ + A3∂
2
X′R

′2] = 0, (35)

where

A1 = ±βV ′,

A2 = |g|4(2b − λa)(3λ + 1) − 4λa − a

4(3λ + 1)
� 3a|g|(2λ + 1)2

4(3λ + 1)
,

A3 = |g|
(

V ′ − 2λ + 1

4
a

)
� a|g|2λ + 1

4
.

If one ignores the O(ε6) terms in equation (35), it is just the KdV equation with a soliton
solution as the desired solution,

R
′
0(X

′, T ′) = A sech2

[√
A

12

(
X′ − A

3
T ′

)]
. (36)

Amplitude A of soliton solutions of the KdV equation is a free parameter. The perturbation term
O(ε6) of perturbed KdV equation, equation (35), selects a unique member of the continuous
family of KdV solitons.

Next, assuming that R
′
(X′, T ′) = R

′
0(X

′, T ′) + εR
′
1(X

′, T ′), we take into account the
O(ε) correction. In order to determine the selected value of A for the soliton solution
equation (36), it is necessary to satisfy the solvability condition,

(R
′
0,M[R

′
0]) ≡

∫ ∞

−∞
R

′
0M[R

′
0] dX′ = 0, (37)

where M[R
′
0] is the O(ε6) term of equation (35).

By performing the integration, one obtains the selected value

A = 21A1

5A2 − 24A3
= 14(3λ + 1)V ′

(14λ + 3)|g| . (38)

By rewriting each variable to the original one, one obtains the soliton solution of the headway:

� xn = �x(0) +
∣∣∣as

a
− 1

∣∣∣ 14(3λ + 1)V ′

(14λ + 3)V ′′ sech2

×
{

−
√

7|as/a − 1|
14λ + 3

[
n +

(
1 +

14(3λ + 1)

3(14λ + 3)

∣∣∣as

a
− 1

∣∣∣)V ′t
]}

. (39)

When λ = 0, A = 14V ′
3|g| is the result derived from the OVM [10, 11, 15].

2.4. MKdV equation

The MKdV equation is derived in the unstable region just below the critical point
(hc, ac), V

′′(hc) = 0 in this subsection [9, 11, 15]. The slow variables have been defined
by equation (22). The headway is set as follows:

�xn = hc + εR(X, T ), ε =
√

ac

a
− 1 � 1. (40)
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By expanding each term in equation (10) to the fifth order of ε, one obtains

d�xn

dt
= ε2b∂XR + ε4∂T R, (41)

d2�xn

dt2
= ε3b2∂2

XR + 2ε5b∂X∂T R, (42)

�xn+1(t) = hc + εR + ε2∂XR +
1

2
ε3∂2

XR +
1

6
ε4∂3

XR +
1

24
ε5∂4

XR, (43)

V (�xn) = V (hc) + V ′(�xn − hc) +
1

6
V ′′′(�xn − hc)

3, (44)

V (�xn+1) − V (�xn) = ε2V ′∂XR +
1

2
ε3V ′∂2

XR + ε4

(
V ′

6
∂3
XR +

V ′′′

6
R∂XR

)

+ ε5

(
V ′

24
∂4
XR +

V ′′′

12
∂2
XR3

)
. (45)

d(�xn+1 − �xn)

dt
= ε3b∂2

XR +
1

2
ε4b∂3

XR + ε5

(
∂X∂T R +

1

6
b∂4

XR

)
. (46)

By substituting equations (41)–(46) into equation (10), one obtains the following nonlinear
partial differential equation:

ε2(ab − aV ′)∂XR + ε3

(
b2 − aV ′

2
− λab

)
∂2
XR

+ ε4

[
a∂T R −

(
aV ′

6
+

λab

2

)
∂3
XR − aV ′′′

6
∂XR3

]

+ ε5

[
(2b − λa)∂X∂T R −

(
aV ′

24
+

λab

6

)
∂4
XR − aV ′′′

12
∂2
XR3

]
= 0. (47)

By taking b = V ′, the second-order term of ε is eliminated and the third-order term of ε may
be written as

ε3

(
b2 − aV ′

2
− λab

)
∂2
XR = ±ε5βV ′∂2

XR. (48)

Using the forth-order term of ε in equation (47),

a∂T R −
(

aV ′

6
+

λab

2

)
∂3
XR − aV ′′′

6
∂XR3,

one obtains

∂X∂T R = (3λ + 1)V ′

6
∂4
XR +

V ′′′

6
∂2
XR3 + O(ε). (49)

By taking equations (48) and (49) into equation (47), one obtains

ε4

(
a∂T R − 3λ + 1

6
aV ′∂3

XR − aV ′′′

6
∂XR3

)

+ ε5

[
±βV ′∂2

XR +
4(2b − λa)(3λ + 1) − (4λ + 1)a

24
V ′∂4

XR

+
2(2b − λa) − a

12
V ′′′∂2

XR3

]
= 0. (50)

In order to derive the regularized equation, we make the following transformations:

R = −
√

− (3λ + 1)V ′

V ′′′ R′, X = X′ and T = 6

(3λ + 1)V ′ T
′. (51)
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With the use of equation (51), one obtains the regularized equation

−ε4a
(3λ + 1)V ′

6

√
− (3λ + 1)V ′

V ′′′
(
∂T ′R′ − ∂3

X′R
′ + ∂X′R′3

)

− ε5V ′
√

− (3λ + 1)V ′

V ′′′
[
C1∂

2
X′R

′ + C2∂
4
X′R

′ + C3∂
2
X′R

′3] = 0, (52)

where

C1 = ±β,

C2 = 4(2b − λa)(3λ + 1) − (4λ + 1)a

24
� 4λ(λ + 1) + 1

8
a,

C3 = −2(2b − λa) − a

12
(3λ + 1) � (2λ + 1)(3λ + 1)

12
a.

If one ignores the O(ε5) term in equation (52), it is just the MKdV equation with a kink
solution as the desired solution,

R
′
0(X

′, T ′) =
√

C tanh

[√
C

2
(X′ − CT ′

]
. (53)

Amplitude C of kink–antikink solutions of the MKdV equation is a free parameter. The
perturbation term O(ε5) of perturbed MKdV equation (52) selects a unique member of the
continuous family of MKdV kinks.

Under the solvability condition, one obtains the selected value

C = 5C1

2C2 − 3C3
= 10

5λ + 2
. (54)

By rewriting each variable to the original one, one obtains the kink solution of the headway:

�xn = hc ±
√

−10(3λ + 1)V ′

(5λ + 2)V ′′′

∣∣∣ac

a
− 1

∣∣∣
× tanh




√
5
∣∣ ac

a
− 1

∣∣
5λ + 2

[
n +

(
1 − 5(3λ + 1)

3(5λ + 2)

∣∣∣ac

a
− 1

∣∣∣) V ′t
]
 . (55)

When λ = 0, C = 5 is the result derived from the OVM [10, 11, 16].

3. Simulation

Since equations (19), (39) and (55) have predicted the triangular shock, soliton and kink–
antikink waves in respective region, we hope we can realize them in numerical simulations
with equation (2) and the optimal velocity function

V (�xn) = vmax

2
{tanh(�xn − hc) + tanh(hc)}, (56)

where vmax is the free flow velocity and hc is the safe distance [3, 15]. Applying the finite
difference method to discretize equation (2), one obtains the following difference update rules:

vn(t + �t) = vn(t) + �t{a[V (xn+1(t) − xn(t)) − vn(t)] + λa[vn+1(t) − vn(t)]}, (57)

xn(t + �t) = xn(t) + �t
vn(t + �t) + vn(t)

2
. (58)
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Figure 1. The initial perturbation I.

0 20 40 60 80 100
4.85

4.9

4.95

5

5.05

5.1

5.15

x

∆x

Figure 2. The initial perturbation II.

We adopt two initial perturbations I and II as follows (figures 1 and 2):

xn(0) =



xn−1(0) + hc − δx n1 < n < n2,

xn−1(0) + hc + δx n2 < n < n2 + n2 − n1,

xn−1(0) + hc other n ∈ [0, N ],
(59)

xn(0) =
{
xn−1(0) + hc − δx n1 < n < n2,

xn−1(0) + hc other n ∈ [0, N ],
(60)

vn(0) = V (�x(0)). (61)

We take the number of the cars N = 100,�t = 0.1 s, n1 = 45, n2 = 50, vmax = 2.0 m s−1

and λ = 0.5.
When a = 0.5 s−1, hc = 5.0 m and �x(0) = 5.0 m, the stability criterion, equation (7),

cannot be satisfied and the initial perturbation is unstable. Figure 3 shows that the initial
perturbation I with δx = 0.1 in figure 1 can evolve to the kink waves after enough time, which
confirms the existence of the kink solution, equation (55), in the unstable region within the
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Figure 3. Kink wave.
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Figure 4. Triangular shock wave.

spinodal line. We can get the same numerical result as figure 3 with the initial perturbation
II, which implies that the kink waveform in the unstable region may be independent of the
initial perturbation configuration. This conclusion has also been obtained by the fluid dynamic
model [21].

When a = 0.5 s−1, hc = 5.0 m and �x(0) = 7.0 m, the stability criterion, equation
(7), can be satisfied and the initial perturbation is stable. Figure 4 shows that the initial
perturbation I with δx = 2.0 in figure 1 can evolve to the triangular shock wave during
the relaxation process of the nonuniform flow to the uniform steady flow, which confirms
the existence of the triangular shock solution, equation (19), in the stable region out of the
coexisting line. However, there is no triangular shock wave either in figure 5 beginning from
the initial perturbation II with δx = 2.0 or in figure 6 beginning from the initial perturbation
I with δx = 0.5, that is to say, the triangular shock wave appears only from the strong
positive initial perturbation in the free flow, the physical significance of which is evident:
when small or negative perturbation happens in the free flow, the car with the velocity less
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Figure 5. Perturbation propagation.
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Figure 6. Perturbation propagation.

than the optimal velocity and the headway less than the average headway in the perturbation
region will accelerate to the optimal velocity, and then the traffic flow becomes homogeneous
and stable again. However, when a large positive perturbation happens, it is not necessary
that the cars with the optimal velocity and the headway larger than average headway in the
perturbation region decelerate to a velocity less than the optimal velocity or the cars outside
the perturbation region accelerate to a velocity larger than the optimal velocity since all cars
run with the optimal velocity, and therefore the strong headway interruption profile always
exists during the relaxation process of the nonuniform flow to the uniform steady flow.

Substituting hc = 3.0 m, �x(0) = 4.0 m, vmax = 2.0 m s−1 and λ = 0.5 into the
spinodal line as = 2

2λ+1V ′, we get as = 0.42. Figure 7 shows that the initial perturbation II
with a = 0.45 s−1 and δx = 0.1 in figure 2 can slowly dissipate to the static soliton wave,
which confirms the existence of the soliton solution, equation (39), near the spinodal line.
However, figure 8 shows that the initial perturbation I with a = 0.45 s−1 and δx = 0.1 in
figure 1 produces a sine wave but not a soliton, that is to say, different initial conditions will
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Figure 7. Soliton wave.
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Figure 8. Sine wave.

produce different waveforms near the spinodal line. Both soliton and sine waves appearing
near the spinodal line have small propagation velocity and stay statically in the initial location.
This quality of soliton is similar to the synchronized flow: once the synchronized flow has
occurred at an on-ramp, the downstream front of the synchronized flow is fixed at the on-ramp.
Moreover, the kink wave also possesses some characteristics of wide moving jam [22], e.g.,
the propagation velocity and the flux on the outflow. It can be considered that nonlinear wave
theory has inner relations with three-phase traffic flow theory, though the latter has much more
complicated structure than the former.

4. Summary

We have analysed the FVDM and derived the Burgers, KdV and MKdV equations, respectively,
in the stable region out of the coexisting curve, near the spinodal line and in the unstable region
within the spinodal line. We have obtained the triangular shock, soliton and kink–antikink
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solutions analytically. The triangular shock, soliton and kink–antikink density waves are
described, respectively, by the Burgers, KdV and MKdV equations. The equations and
solutions from the FVDM can be reduced to those from the OVM if not considering the effect
of velocity difference. The numerical simulations confirm the existence of the triangular
shock wave, the soliton wave and the kink–antikink wave in respective region. The triangular
shock wave and the soliton wave can only be produced under certain initial condition. Only
strong positive perturbation can yield the triangular shock wave in free flow and the strong
headway interruption profile happens during the relaxation process of the nonuniform flow to
the uniform steady flow. The soliton wave is fixed at the initial location, which is similar to
the synchronized flow with respect to the spatial limit. We can further find more similarities
between the nonlinear flow theory and three-phase traffic flow theory.
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